C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Differential Geometry Subject Code: 5SC02DIG1 Semester: 2 Date:02/05/2017

Branch: M.Sc. (Mathematics) Time:02:00 To 05:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions

Q-2

Q-2

Q-3

		· · /		
a.	Convert parametrized curve $\bar{r}: R \to R^2$ by $\bar{r}(t) = (a \cos t, b \sin t)$ in to	(01)		
	Cartesian curve where $a, b \in R - \{0\}$.			
b.	Define: Planar curve.	(01)		
c.	c. Check whether the curve $\bar{r}(t) = (\cos t, \sin t, 3 \sin t + 4 \cos t)$ is planar or not			
d.				
e.	Define: Signed curvature.			
f.	Consider the logarithmic spiral $\bar{r}(t) = (e^t \cos t, e^t \sin t)$ then prove that the	(02)		
	angle between $\bar{r}(t)$ and $\dot{\bar{r}}(t)$ is independent of t.			
a)	Attempt all questions	(14)		
	$ \vec{r} \times \vec{r} $	(06)		
	If \bar{r} is a regular curve in R^3 then prove that the curvature $k = \frac{\ \bar{r} \times \bar{r}\ }{\ \bar{r}\ ^3}$			
b)	Compute curvature and torsion of $\overline{r}(t) = (a \cos t, a \sin t, bt)$.	(06)		
c)	Let S and \tilde{S} be smooth surfaces. Let $f: S \to \tilde{S}$ be a smooth map and let $p \in S$. In	(02)		
	usual notation prove that the derivative $D_p f: T_p S \to T_{f(p)} \tilde{S}$ is a linear map.			
	OR			
	Attempt all questions	(14)		
a)	Let \overline{r} : $(a, b) \rightarrow R^3$ be a regular curve with nowhere vanishing curvature. Then	(06)		
	$(\dot{\bar{r}} \times \ddot{\bar{r}}) \cdot \ddot{\bar{r}}$			
	prove that the torsion τ of \bar{r} is $\frac{(\bar{r} \times \bar{r}) \cdot \bar{r}}{\ \bar{r} \times \bar{r}\ ^2}$			
b)		(04)		
b)	Prove that a re-parametrization of a regular curve is regular.	(04)		
c)	Show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a convex curve.	(04)		
	u b	(14)		
	Attempt all questions			
a)	Let $\overline{r}:(a,b) \to R^2$ be a unit speed curve and let $s_0 \in (a,b)$. Let $\phi_0 \in R$ be such	(07)		

Let $r: (a, b) \to R^2$ be a unit speed curve and let $s_0 \in (a, b)$. Let $\phi_0 \in R$ be such that $\dot{\bar{r}}(s_0) = (\cos \phi_0, \sin \phi_0)$. Then prove that there exists a unique smooth

(07)

map ϕ : $(a, b) \to R$ such that $\dot{\bar{r}}(s) = (\cos \phi(s), \sin \phi(s))$ for all $s \in (a, b)$ and $\phi(s_0) = \phi_0$.

b) If $K: (a, b) \to R$ is a smooth map then prove that there is a unit speed curve (07) $\bar{r}: (a, b) \to R^2$ whose signed curvature is *K*. Also if $\bar{r}: (a, b) \to R^2$ is unit speed curve with signed curvature is *K* then prove that there is a direct isometry *M* of R^2 such that $\tilde{r} = M \circ \bar{r}$.

OR

Q-3	a)		Let $F: [0, \pi] \to R$ be a smooth map satisfying $F(0) = F(\pi) = 0$ then prove that $\int_0^{\pi} \dot{F}^2 dt \ge \int_0^{\pi} F^2 dt$.	(05)
	b)		Compute first fundamental form of the surface $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)).$	(05)
	c)		Check whether the surface $S = \{(x, y, z) \in \mathbb{R}^3 z = x^2 + y^2\}$ is smooth. SECTION – II	(04)
Q-4			Attempt the Following questions	(07)
		a. 1	Define: Surface.	(01)
		b.	Define: Oriented Surface.	(01) (01)
		c. d.	Define: Unit normal to surface at a point. Define: Local isometry.	(01) (01)
		u. e.	Define: Umbilical point.	(01)
		f.	Define: Geodesic	(01)
		g.	State Bonnet's theorem.	(01)
Q-5			Attempt all questions	(14)
-	a)		Calculate second fundamental form of sphere.	(07)
	b)		Compute the Gaussian curvature and the mean curvature of the surface $z = f(x, y)$ where <i>f</i> is smooth map.	(07)
			OR	
Q-5	a)		Compute the principal curvatures on the surface $\sigma(u, v) = (u, v, uv)$.	(07)
	b)		Prove that surface area of sphere having radius r is $4\pi r^2$.	(04)
	c)		Find the image of the Gauss map for $\sigma(u, v) = (u, v, u^2 + v^2)$ where $u, v \in R$.	(03)
Q-6			Attempt all questions	(14)
	a)		State and prove Euler's theorem.	(05)
	b)		State and prove Meunier's theorem.	(05)
	c)		Prove that a unit speed curve on a surface S is a geodesic if and only if its geodesic curvature is zero everywhere.	(04)
0 (OR	(0.0)
Q-6	a)		Determine the parabolic, elliptic and hyperbolic points on the surface $\sigma(u, v) = ((b + a\cos v)\cos u, (b + a\cos v)\sin u, a\sin v)$, where $b > a$.	(09)
	b)		Compute Christoffel's symbols of second kind for the circular cylinder $\sigma(u, v) = (\cos u, \sin u, v).$	(05)

